If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+24X-328=0
a = 1; b = 24; c = -328;
Δ = b2-4ac
Δ = 242-4·1·(-328)
Δ = 1888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1888}=\sqrt{16*118}=\sqrt{16}*\sqrt{118}=4\sqrt{118}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{118}}{2*1}=\frac{-24-4\sqrt{118}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{118}}{2*1}=\frac{-24+4\sqrt{118}}{2} $
| 12m+50=74.99 | | 12m+50=62 | | (2x-1)=-10(x-5) | | j-+3j+2=-14 | | 1/8x+1/2x=2/5 | | 5(1/3+c)=21/2 | | -9(x)=x/3+4 | | 5(1/2+c)=21/2 | | (9+y)*11=121 | | -5/4x+2/5=13/30 | | 2x-x+7=4+x+3 | | X×(7-4)=28-x | | 15=x=20 | | (x+4)^4+7=297 | | (x^2−4x+3)^2=1 | | (x²−4x+3)²=1 | | 3y-18=3y=18 | | 6y=5(6y+28) | | (x²-4x+3)²=1 | | 10x+18=14x-2 | | x^2+30x=3000 | | y=3/5(2)+1 | | x^2+30x=1 | | 3(1/3+c)=21/2 | | 8/3x+4=10 | | 0=-3t^2+6t-1 | | 56=x+18 | | 43-x=26 | | 60.3=9x | | 12y+20=5y+41 | | (7x^2-5x+1)-(-6x^2-3x+2)=0 | | 27=5+x |